๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
์ „๋ฌธ์„ฑ์€ ๋ฌด์—‡์œผ๋กœ ๋งŒ๋“ค์–ด์ง€๋Š”๊ฐ€ ๐ŸŽ“/์ด๋ก ๊ณผ ์‹ค์Šต์œผ๋กœ ๋ฐฐ์šฐ๋Š” AI ์ž…๋ฌธ ๐Ÿค–

5. ์ปดํ“จํ„ฐ ๋น„์ „

by ์—”์นด์ฝ” 2025. 2. 4.
๋ฐ˜์‘ํ˜•
์ปดํ“จํ„ฐ ๋น„์ „(Computer Vision)์€ ๋จธ์‹ ๋Ÿฌ๋‹๊ณผ ๋”ฅ๋Ÿฌ๋‹์„ ํ™œ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€๋‚˜ ๋™์˜์ƒ์„ ๋ถ„์„ํ•˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ์ด๋ฒˆ ๊ธ€์—์„œ๋Š” ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ์˜ ๊ธฐ๋ณธ ๊ฐœ๋…๊ณผ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(CNN)์˜ ์›๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๊ณ , Python์„ ํ™œ์šฉํ•œ CNN ๊ธฐ๋ฐ˜์˜ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์‹ค์Šต์„ ์ง„ํ–‰ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ๊ฐ์ฒด ํƒ์ง€ ๋ฐ ์ด๋ฏธ์ง€ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ํ”„๋กœ์ ํŠธ ์•„์ด๋””์–ด๋„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค.

[ ์—”์นด์ฝ” ]

1. ์ปดํ“จํ„ฐ ๋น„์ „ ์ด๋ก 

1.1 ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ๊ธฐ๋ณธ ๊ฐœ๋…

์ปดํ“จํ„ฐ ๋น„์ „์—์„œ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ์˜๋ฏธ ์žˆ๋Š” ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๋Š” ๊ณผ์ •์ž…๋‹ˆ๋‹ค. ์ฃผ์š” ๊ฐœ๋…์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • ํ”ฝ์…€(Pixel): ์ด๋ฏธ์ง€์˜ ์ตœ์†Œ ๋‹จ์œ„๋กœ, RGB ๊ฐ’(์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€) ๋˜๋Š” ๊ทธ๋ ˆ์ด์Šค์ผ€์ผ ๊ฐ’(ํ‘๋ฐฑ ์ด๋ฏธ์ง€)์œผ๋กœ ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค.
  • ํ•„ํ„ฐ(Filter): ํŠน์ • ํŒจํ„ด์„ ๊ฐ•์กฐํ•˜๊ฑฐ๋‚˜ ์žก์Œ์„ ์ œ๊ฑฐํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
  • ์ปจ๋ณผ๋ฃจ์…˜(Convolution): ํ•„ํ„ฐ๋ฅผ ์ ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€์˜ ํŠน์ง•์„ ์ถ”์ถœํ•˜๋Š” ์—ฐ์‚ฐ์ž…๋‹ˆ๋‹ค.
  • ์—์ง€ ๊ฒ€์ถœ(Edge Detection): ์ด๋ฏธ์ง€ ๋‚ด์—์„œ ๊ฒฝ๊ณ„๋ฅผ ๊ฐ์ง€ํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค.

1.2 ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(CNN) ์ดํ•ด

CNN(Convolutional Neural Network)์€ ์ด๋ฏธ์ง€ ์ธ์‹์„ ์œ„ํ•œ ๋Œ€ํ‘œ์ ์ธ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • ํ•ฉ์„ฑ๊ณฑ ๊ณ„์ธต(Convolutional Layer): ์ด๋ฏธ์ง€์—์„œ ํŠน์ง•์„ ์ถ”์ถœํ•˜๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค.
  • ํ’€๋ง ๊ณ„์ธต(Pooling Layer): ํŠน์ง• ๋งต์˜ ํฌ๊ธฐ๋ฅผ ์ค„์—ฌ ์—ฐ์‚ฐ๋Ÿ‰์„ ๊ฐ์†Œ์‹œํ‚ค๊ณ , ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค.
  • ์™„์ „ ์—ฐ๊ฒฐ ๊ณ„์ธต(Fully Connected Layer): ์ถ”์ถœ๋œ ํŠน์ง•์„ ๋ฐ”ํƒ•์œผ๋กœ ์ตœ์ข… ๋ถ„๋ฅ˜๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

CNN์€ ์ด๋Ÿฌํ•œ ๊ณ„์ธต๋“ค์„ ์ˆœ์ฐจ์ ์œผ๋กœ ์—ฐ๊ฒฐํ•˜์—ฌ ์ด๋ฏธ์ง€์˜ ๋ณต์žกํ•œ ํŒจํ„ด์„ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.


2. ์‹ค์Šต: CNN์„ ์ด์šฉํ•œ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜

์•„๋ž˜ ์˜ˆ์ œ์—์„œ๋Š” Python์˜ TensorFlow์™€ Keras ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ํ™œ์šฉํ•˜์—ฌ MNIST ๋ฐ์ดํ„ฐ์…‹์„ ๋ถ„๋ฅ˜ํ•˜๋Š” CNN ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

2.1 ์˜ˆ์ œ ์ฝ”๋“œ

# winget์œผ๋กœ ์„ค์น˜ (Windows 11/10)
winget install Python.Python.3.10

# py launcher ์„ค์น˜
pip install py

# ์„ค์น˜๋œ ๋ชจ๋“  Python ๋ฒ„์ „ ํ™•์ธ
py --list

# Python 3.10์œผ๋กœ ์‹คํ–‰
py -3.10

# pip ์‚ฌ์šฉํ•  ๋•Œ
py -3.10 -m pip install tensorflow
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm

# ํ•œ๊ธ€ ํฐํŠธ ์„ค์ •
plt.rcParams['font.family'] = 'Malgun Gothic'  # Windows
# plt.rcParams['font.family'] = 'AppleGothic'  # Mac
plt.rcParams['axes.unicode_minus'] = False  # ๋งˆ์ด๋„ˆ์Šค ๊ธฐํ˜ธ ๊นจ์ง ๋ฐฉ์ง€

# MNIST ๋ฐ์ดํ„ฐ์…‹ ๋กœ๋“œ ๋ฐ ์ „์ฒ˜๋ฆฌ
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

# ๋ฐ์ดํ„ฐ ์ฐจ์› ํ™•์žฅ ๋ฐ ์ •๊ทœํ™” (CNN์€ 4D ํ…์„œ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์Œ: (์ƒ˜ํ”Œ ์ˆ˜, ๋†’์ด, ๋„ˆ๋น„, ์ฑ„๋„))
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255.0
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255.0

# ๋ชจ๋ธ ๊ตฌ์„ฑ
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')  # 10๊ฐœ์˜ ํด๋ž˜์Šค (์ˆซ์ž 0-9)
])

# ๋ชจ๋ธ ์ปดํŒŒ์ผ
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# ๋ชจ๋ธ ์š”์•ฝ ์ถœ๋ ฅ
model.summary()

# ๋ชจ๋ธ ํ•™์Šต
history = model.fit(train_images, train_labels, epochs=5, 
                    validation_data=(test_images, test_labels))

# ๋ชจ๋ธ ํ‰๊ฐ€
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f"ํ…Œ์ŠคํŠธ ์ •ํ™•๋„: {test_acc:.4f}")

# ํ•™์Šต ๊ณผ์ • ์‹œ๊ฐํ™”
plt.plot(history.history['accuracy'], label='ํ›ˆ๋ จ ์ •ํ™•๋„')
plt.plot(history.history['val_accuracy'], label='๊ฒ€์ฆ ์ •ํ™•๋„')
plt.xlabel('์—ํฌํฌ')
plt.ylabel('์ •ํ™•๋„')
plt.legend()
plt.title('ํ•™์Šต ๋ฐ ๊ฒ€์ฆ ์ •ํ™•๋„')
plt.show()

2.2 ์ฝ”๋“œ ์„ค๋ช…

  • ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ: MNIST ๋ฐ์ดํ„ฐ์…‹์„ ๋ถˆ๋Ÿฌ์™€ ์ •๊ทœํ™”ํ•˜๊ณ  CNN ์ž…๋ ฅ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
  • CNN ๋ชจ๋ธ ๊ตฌ์„ฑ: ์„ธ ๊ฐœ์˜ ํ•ฉ์„ฑ๊ณฑ ๊ณ„์ธต๊ณผ ํ’€๋ง ๊ณ„์ธต์„ ํฌํ•จํ•œ ๊ฐ„๋‹จํ•œ CNN์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
  • ๋ชจ๋ธ ํ•™์Šต ๋ฐ ํ‰๊ฐ€: 5๋ฒˆ์˜ ์—ํฌํฌ ๋™์•ˆ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๊ณ , ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์—์„œ ์ •ํ™•๋„๋ฅผ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค.
  • ์‹œ๊ฐํ™”: ํ›ˆ๋ จ ์ •ํ™•๋„์™€ ๊ฒ€์ฆ ์ •ํ™•๋„๋ฅผ ํ”Œ๋กฏํ•˜์—ฌ ํ•™์Šต ๊ณผ์ •์„ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค.


3. ํ”„๋กœ์ ํŠธ: ๊ฐ์ฒด ํƒ์ง€ ๋˜๋Š” ์ด๋ฏธ์ง€ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๊ฐœ๋ฐœ

CNN์„ ํ™œ์šฉํ•˜์—ฌ ๋ณด๋‹ค ๋ฐœ์ „๋œ ์ปดํ“จํ„ฐ ๋น„์ „ ํ”„๋กœ์ ํŠธ๋ฅผ ๊ฐœ๋ฐœํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

3.1 ๊ฐ์ฒด ํƒ์ง€(Object Detection)

๊ฐ์ฒด ํƒ์ง€๋Š” ์ด๋ฏธ์ง€ ๋‚ด์˜ ์—ฌ๋Ÿฌ ๊ฐ์ฒด๋ฅผ ํƒ์ง€ํ•˜๊ณ , ์œ„์น˜๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ๋Œ€ํ‘œ์ ์ธ ๋ชจ๋ธ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • YOLO(You Only Look Once)
  • SSD(Single Shot MultiBox Detector)
  • Faster R-CNN

๊ฐœ๋ฐœ ์•„์ด๋””์–ด

  • ์‹ค์‹œ๊ฐ„ CCTV ์˜์ƒ์—์„œ ์‚ฌ๋žŒ ๋˜๋Š” ์ฐจ๋Ÿ‰ ํƒ์ง€
  • ์Šค๋งˆํŠธ ํŒฉํ† ๋ฆฌ์—์„œ ๊ฒฐํ•จ ์ œํ’ˆ ์ž๋™ ๊ฐ์ง€ ์‹œ์Šคํ…œ ๊ตฌ์ถ•

3.2 ์ด๋ฏธ์ง€ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜(Image Segmentation)

์ด๋ฏธ์ง€ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜์€ ํ”ฝ์…€ ๋‹จ์œ„๋กœ ๊ฐ์ฒด๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ๊ธฐ์ˆ ๋กœ, ์ฃผ์š” ๋ชจ๋ธ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • U-Net: ์˜๋ฃŒ ์˜์ƒ ๋ถ„์„์—์„œ ๋งŽ์ด ์‚ฌ์šฉ๋จ
  • Mask R-CNN: ๊ฐ์ฒด ํƒ์ง€์™€ ํ”ฝ์…€ ๋‹จ์œ„ ๋ถ„ํ• ์„ ๋™์‹œ์— ์ˆ˜ํ–‰

๊ฐœ๋ฐœ ์•„์ด๋””์–ด

  • ์˜๋ฃŒ ์˜์ƒ์—์„œ ์•”์„ธํฌ ์ž๋™ ํƒ์ง€
  • ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์„ ์œ„ํ•œ ๋„๋กœ ๋ฐ ์ฐจ์„  ์ธ์‹
from ultralytics import YOLO
import cv2
import numpy as np
import torch
from ultralytics.nn.tasks import DetectionModel
from torch.nn.modules.container import Sequential
from ultralytics.nn.modules import Conv

# YOLO ๋ชจ๋ธ ๋กœ๋“œ ์ „์— ์•ˆ์ „ํ•œ ๊ธ€๋กœ๋ฒŒ ์„ค์ • ์ถ”๊ฐ€
torch.serialization.add_safe_globals([DetectionModel, Sequential, Conv])

# ์›๋ณธ torch.load ํ•จ์ˆ˜ ์ €์žฅ
_original_load = torch.load

# torch.load ์žฌ์ •์˜
def custom_load(f, *args, **kwargs):
    kwargs['weights_only'] = False
    return _original_load(f, *args, **kwargs)

torch.load = custom_load

def preprocess_image(img):
    # ์ด๋ฏธ์ง€ ํฌ๊ธฐ ์ตœ์ ํ™”
    img = cv2.resize(img, (640, 640))
    return img

def detect_vehicles(image_path):
    # YOLO ๋ชจ๋ธ ๋กœ๋“œ ๋ฐ ์ตœ์ ํ™”
    model = YOLO('yolov8n.pt')
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model = model.to(device)
    if device == 'cuda':
        model = model.half()
    
    # ์ด๋ฏธ์ง€ ๋กœ๋“œ ๋ฐ ์ „์ฒ˜๋ฆฌ
    img = cv2.imread(image_path)
    if img is None:
        raise ValueError("์ด๋ฏธ์ง€๋ฅผ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
    
    # ์›๋ณธ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ์œ ์ง€
    original_img = img.copy()
    
    # ๊ฐ์ฒด ๊ฒ€์ถœ ์ˆ˜ํ–‰
    results = model(img, conf=0.3, iou=0.45)
    
    # ๊ฒ€์ถœ ๋Œ€์ƒ ํด๋ž˜์Šค ID (COCO dataset ๊ธฐ์ค€)
    target_classes = {
        0: 'person',  # ์‚ฌ๋žŒ
        2: 'car',     # ์ž๋™์ฐจ
        3: 'motorcycle', # ์˜คํ† ๋ฐ”์ด
        5: 'bus',     # ๋ฒ„์Šค
        7: 'truck'    # ํŠธ๋Ÿญ
    }
    
    detection_count = {'person': 0, 'vehicle': 0}
    detected_boxes = []
    
    # ๊ฒ€์ถœ๋œ ๊ฐ์ฒด์— ๋Œ€ํ•ด ์ฒ˜๋ฆฌ
    for result in results:
        boxes = result.boxes
        for box in boxes:
            cls = int(box.cls[0])
            conf = float(box.conf[0])
            
            # ๋Œ€์ƒ ํด๋ž˜์Šค๋งŒ ์ฒ˜๋ฆฌ
            if cls in target_classes:
                # ์ค‘๋ณต ๊ฒ€์ถœ ๋ฐฉ์ง€๋ฅผ ์œ„ํ•œ IoU ์ฒดํฌ
                current_box = box.xyxy[0].cpu().numpy()
                is_duplicate = False
                
                for detected_box in detected_boxes:
                    iou = calculate_iou(current_box, detected_box)
                    if iou > 0.45:
                        is_duplicate = True
                        break
                
                if not is_duplicate:
                    # ์‚ฌ๋žŒ๊ณผ ์ฐจ๋Ÿ‰ ์นด์šดํŠธ ๋ถ„๋ฆฌ
                    if cls == 0:
                        detection_count['person'] += 1
                        color = (0, 255, 0)  # ์ดˆ๋ก์ƒ‰ (์‚ฌ๋žŒ)
                    else:
                        detection_count['vehicle'] += 1
                        color = (0, 0, 255)  # ๋นจ๊ฐ„์ƒ‰ (์ฐจ๋Ÿ‰)
                    
                    detected_boxes.append(current_box)
                    
                    # ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ๊ทธ๋ฆฌ๊ธฐ
                    x1, y1, x2, y2 = map(int, current_box)
                    cv2.rectangle(original_img, (x1, y1), (x2, y2), color, 2)
                    
                    # ํด๋ž˜์Šค์™€ ์‹ ๋ขฐ๋„ ํ‘œ์‹œ
                    label = f"{target_classes[cls]}: {conf:.2f}"
                    cv2.putText(original_img, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
    
    print(f"๊ฒ€์ถœ๋œ ์‚ฌ๋žŒ ์ˆ˜: {detection_count['person']}")
    print(f"๊ฒ€์ถœ๋œ ์ฐจ๋Ÿ‰ ์ˆ˜: {detection_count['vehicle']}")
    return original_img, detection_count

def calculate_iou(box1, box2):
    # IoU ๊ณ„์‚ฐ ํ•จ์ˆ˜
    x1 = max(box1[0], box2[0])
    y1 = max(box1[1], box2[1])
    x2 = min(box1[2], box2[2])
    y2 = min(box1[3], box2[3])
    
    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
    box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
    
    union = box1_area + box2_area - intersection
    
    return intersection / union if union > 0 else 0

def save_result(img, output_path):
    cv2.imwrite(output_path, img)
    print(f"๊ฒฐ๊ณผ๊ฐ€ {output_path}์— ์ €์žฅ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")

if __name__ == "__main__":
    # ์ด๋ฏธ์ง€ ๊ฒฝ๋กœ ์„ค์ •
    input_image = "car.jpg"  # ๋ถ„์„ํ•  ์ด๋ฏธ์ง€ ๊ฒฝ๋กœ
    output_image = "result2.jpg"     # ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€ ์ €์žฅ ๊ฒฝ๋กœ
    
    # ๊ฐ์ฒด ๊ฒ€์ถœ ์ˆ˜ํ–‰
    result_img, counts = detect_vehicles(input_image)
    
    # ๊ฒฐ๊ณผ ์ €์žฅ
    save_result(result_img, output_image)


์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ๋Š” ์ปดํ“จํ„ฐ ๋น„์ „์˜ ๊ฐœ๋…๊ณผ CNN์˜ ์›๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๊ณ , Python์„ ํ™œ์šฉํ•˜์—ฌ CNN ๊ธฐ๋ฐ˜์˜ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์‹ค์Šต์„ ์ง„ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ์ฒด ํƒ์ง€ ๋ฐ ์ด๋ฏธ์ง€ ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜๊ณผ ๊ฐ™์€ ๊ณ ๊ธ‰ ์‘์šฉ ํ”„๋กœ์ ํŠธ๋„ ๊ฐœ๋ฐœํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ปดํ“จํ„ฐ ๋น„์ „์€ ๋‹ค์–‘ํ•œ ์‚ฐ์—…์—์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ•๋ ฅํ•œ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ๋ถ„๋„ ์ง์ ‘ CNN์„ ํ™œ์šฉํ•œ ํ”„๋กœ์ ํŠธ๋ฅผ ์ง„ํ–‰ํ•ด ๋ณด๋ฉด์„œ ๋” ๊นŠ์ด ์žˆ๋Š” ๊ฒฝํ—˜์„ ์Œ“์•„๋ณด์‹œ๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.


์งˆ๋ฌธ์ด๋‚˜ ์˜๊ฒฌ์ด ์žˆ์œผ์‹œ๋ฉด ๋Œ“๊ธ€๋กœ ๋‚จ๊ฒจ์ฃผ์„ธ์š”! ๐Ÿ˜Š

๋ฐ˜์‘ํ˜•